Roll No.

Total Pages : 04

GSQ/M-20
 MATHEMATICS
 BM-362
 Linear Algebra

 1722Time : Three Hours]
[Maximum Marks : 26

Note : Attempt Five questions in all, selecting one question from each Section. Q. No. 1 is compulsory.

Compulsory Question

1. (a) What can you say about the linear span of the empty set ?

1
(b) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a homomorphism, then prove that ker T is a subspace of U. $\mathbf{1}$
(c) Show that $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3}$ given by $\quad \mathbf{1}$ $\mathrm{T}(x, y)=(2 x-y, x-y,-2 x)$ is a linear transformation.
(d) Normalize the vector $u=(2,1,-1)$ in \mathbf{R}^{3}. $\quad 1$
(e) Show that the linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $\mathrm{T}(x, y, z)=(x+z, x-z, y)$ is nonsingular.

Section I

2. (a) Prove that a minimal generating set of a finitely generated vector space $V(F)$ is always a basis of V. $21 / 2$
(b) Show that the union $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ of subspaces of a vector space V need not be a subspace of V . $\mathbf{2}^{1 / 2}$
3. (a) Let $\mathrm{U}=\mathrm{L}\left(\mathrm{S}_{1}\right)$ and $\mathrm{V}=\mathrm{L}\left(\mathrm{S}_{2}\right)$, where :
$S_{1}=\{(1,3,-2,2,3),(1,4,-3,4,2),(2,3,-1,-2,9)\}$, $\mathrm{S}_{2}=\{(1,3,0,2,1),(1,5,-6,6,3),(2,5,3,2,1)\}$. Find basis and dimension of $\mathrm{U}+\mathrm{V}$. $\mathbf{2 ¹ ⁄ 2}_{\mathbf{2}}$
(b) Let W be a subspace of a finite dimensional vector space $V(F)$, then show that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.

Section II

4. (a) Find a linear transformation $T: R^{3} \rightarrow R^{2}$ such that $\mathrm{T}(1,1,1)=(1,0)$ and $\mathrm{T}(1,1,2)=(1,-1) . \quad 21 / 2$
(b) If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear transformation, then show that $\operatorname{dim}(\mathrm{R}(\mathrm{T}))+\operatorname{dim}(\mathrm{N}(\mathrm{T}))=\operatorname{dim} \mathrm{U}$. $21 / 2$
5. (a) Find a linear transformation $T: R^{3} \rightarrow R^{3}$ whose range is generated by $(1,0,-1),(1,2,2)$. $\quad \mathbf{2} 1 / 2$
(b) If $\mathrm{B}=\{(-1,11),(1,-1,1),(1,1,-1)\}$ be a basis of R^{3}, then find the dual basis of B .

Section III

6. (a) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear operator defined by $\mathrm{T}(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$. Show that T is invertible and find T^{-1}.
$21 / 2$
(b) Find the linear map $T: R^{2} \rightarrow R^{3}$ whose matrix is $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 3 \\ 0 & 1\end{array}\right]$, relative to the ordered basis $B=\{(1,1),(0,2)\}$ and $B^{\prime}=\{(0,1,1),(1,0,1)$, $(1,1,0)\}$ for R^{3}. $21 / 2$
7. (a) Find the co-ordinates of $(1,2,1)$ relative to the basis $\{(1,1,2),(2,2,1),(1,2,2)\}$ using change of basis matrix (transition matrix).
(b) If T be an invertible operator and λ is an eigen value of T, then show that λ^{-1} is an eigen value of T^{-1}.
$21 / 2$

Section IV

8. (a) Let V be an inner product space, then show that $\|u+v\|=\|u\|+\|v\|$. $21 / 2$
(b) Obtain an orthonormal basis with respect to standard inner product for the subspace of R^{3} generated by $(1,0,1),(1,0,-1)$ and $(0,3,4)$. $21 / 2$
9. (a) Show that a linear operator T on a unitary space V in Hermitian iff $<\mathrm{T}(\alpha), \alpha>$ is real for every $\alpha . \mathbf{2}^{1 / 2}$
(b) Let T be a linear operator on an inner product space $\mathrm{V}(\mathrm{F})$. If $\mathrm{T}^{2}(u)=0$ and T is self-adjoint or skew-symmetric, then show that $\mathrm{T}(u)=0 . \quad 21 / 2$
