Roll No.

Total Pages : 04

GSQ/M-20 1722 MATHEMATICS BM-362 Linear Algebra

Time : Three Hours]

[Maximum Marks : 26

Note : Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

Compulsory Question

(a)	What can you say about the linear span of t	he
	empty set ?	1
(b)	Let $T:U\rightarrowV$ be a homomorphism, then pro	ve
	that ker T is a subspace of U.	1
(c)	Show that $T : \mathbb{R}^2 \to \mathbb{R}^3$ given by	1
	(a) (b) (c)	 (a) What can you say about the linear span of the empty set ? (b) Let T : U → V be a homomorphism, then protect that ker T is a subspace of U. (c) Show that T : R² → R³ given by

T(x, y) = (2x - y, x - y, -2x) is a linear transformation.

- (d) Normalize the vector u = (2, 1, -1) in \mathbb{R}^3 . 1
- (e) Show that the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + z, x - z, y) is nonsingular. 2

(3)L-1722

Section I

- 2. (a) Prove that a minimal generating set of a finitely generated vector space V(F) is always a basis of V.
 - (b) Show that the union $W_1 \cup W_2$ of subspaces of a vector space V need not be a subspace of V. $2\frac{1}{2}$
- 3. (a) Let U = L (S₁) and V = L(S₂), where : $S_1 = \{(1, 3, -2, 2, 3), (1, 4, -3, 4, 2), (2, 3, -1, -2, 9)\},$ $S_2 = \{(1, 3, 0, 2, 1), (1, 5, -6, 6, 3), (2, 5, 3, 2, 1)\}.$ Find basis and dimension of U + V. 2¹/₂
 - (b) Let W be a subspace of a finite dimensional vector space V(F), then show that $\dim \frac{V}{W} = \dim V \dim W$.

21/2

Section II

- 4. (a) Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, 1, 1) = (1, 0) and T(1, 1, 2) = (1, -1). 2¹/₂
 - (b) If $T : U \to V$ be a linear transformation, then show that $\dim(R(T)) + \dim(N(T)) = \dim U$. 2¹/₂
- 5. (a) Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose range is generated by (1, 0, -1), (1, 2, 2). $2\frac{1}{2}$

(3)L-1722

(b) If B = {(-1, 1 1), (1, -1, 1), (1, 1, -1)} be a basis of R³, then find the dual basis of B. $2\frac{1}{2}$

Section III

- 6. (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by T(x, y, z) = (2x, 4x - y, 2x + 3y - z). Show that T is invertible and find T^{-1} . $2^{1/2}$
 - (b) Find the linear map $T : \mathbb{R}^2 \to \mathbb{R}^3$ whose matrix is

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \\ 0 & 1 \end{bmatrix}, \text{ relative to the ordered basis}$$
$$B = \{(1, 1), (0, 2)\} \text{ and } B' = \{(0, 1, 1), (1, 0, 1), (1,$$

$$(1, 1, 0)$$
 for \mathbb{R}^3 .

- 7. (a) Find the co-ordinates of (1, 2, 1) relative to the basis $\{(1, 1, 2), (2, 2, 1), (1, 2, 2)\}$ using change of basis matrix (transition matrix). $2^{1/2}$
 - (b) If T be an invertible operator and λ is an eigen value of T, then show that λ^{-1} is an eigen value of T⁻¹. **2**¹/₂

Section IV

8. (a) Let V be an inner product space, then show that ||u+v|| = ||u|| + ||v||. $2^{1/2}$

(3)L-1722

- (b) Obtain an orthonormal basis with respect to standard inner product for the subspace of R³ generated by (1, 0, 1), (1, 0, -1) and (0, 3, 4).
- 9. (a) Show that a linear operator T on a unitary space V in Hermitian iff $< T(\alpha)$, $\alpha >$ is real for every α . 2¹/₂
 - (b) Let T be a linear operator on an inner product space V(F). If $T^2(u) = 0$ and T is self-adjoint or skew-symmetric, then show that T(u) = 0. $2\frac{1}{2}$

4